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SUMMARY 

An investigation  has  been made t o  determine some e f f ec t s  of t a i l  
damping and wing-tai l   in terference on the   ro l l ing   e f fec t iveness  of 
a i lerons and a spoi le r  on a modified-delta wing. The inves t iga t ion  w a s  
made by means of f r ee - f l i gh t  models a t  0' angle  of  attack and Oo angle 
of sideslip  over a range  of Mach numbers from 0.6 t o  1.5. The results 
ind ica t e   t ha t   add ing   t a i l   su r f aces   t o  a wing--body combination  appreciably 
reduced  the  rolling  effectiveness of a 1/3-exposed-span  inboard  aileron, 
a 2/3-exposed-span  inboard  aileron, and a 2/3-exposed-span  inboard 
spoiler,  but  caused  negligible change in   the   ro l l ing   e f fec t iveness   o f  a 
1/3-exposed-span  midspan a i le ron .  Changing the   loca t ion  of the  horizon- 
t a l  t a i l  from the  plane of the wing t o  40 percent  of  the wing root  chord 
above the  plane  of  the wing caused a fur ther   reduct ion   in   the   ro l l ing  
effectiveness of the 2/3-exposed-span a i le ron  a t  subsonic  speeds and the 
2/3-exposed-span spoi le r  a t  both  subsonic and supersonic  speeds. 

INTRODUCTION 

The importance of including  the  effects  of t a i l  damping and wing- 
t a i l  in te r fe rence   in   inves t iga t ions  of ro l l ing   e f fec t iveness  of la teral  
controls  has  been shown previously  in   reference 1. The data  of refer- 
ence 1 were l imi t ed   t o   a i l e rons ,  however,  and were l imited as t o   t h e  t a i l  
loca t ions   inves t iga ted   in  an e f f o r t   t o   a l l e v i a t e   t h e   e f f e c t s  of downwash 

of t a i l  damping and wing-tail   interference on the   ro l l ing   e f fec t iveness  
of both  ailerons and spoi le rs  and t o  determine  the  effect   of moving the  

f also.  It is  the  purpose of this investigation  to  determine some e f f e c t s  
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horizontal  t a i l  from  the  plane  of  the wing t o  an appreciable  distance 
above the  plane of the wing. The invest igat ion was made a t  Oo angle of 
a t t ack  and 0' angle  of  sideslip  over a range  of Mach numbers from 0.6 
t o  1.5. 

SYMBOLS 

b  wing  span, f t  

C wing chord, f t  

wing root  chord a t  body center   l ine ,  1.416 f t  

M Mach number 

P rol l ing  veloci ty ,   radians/sec 

K Reynolds number 

V veloc i ty  of model a long   f l igh t   pa th ,   f t / sec  

pb/2V wing-tip  helix  angle,  radians 

A(pb/2V)  change i n  pb/2V due t o  a  change i n  model geometry 

DESCRIPTION O F  MODELS 

The models  of th i s   inves t iga t ion   cons is ted  of modified-delta wings 
on cylindrical  bodies  with  ogive  noses and w i t h   t a i l s  which  were f r e e   t o  
roll r e l a t i v e   t o   t h e  body so as  to  provide  longitudinal and d i r ec t iona l  
s tab i l i ty   wi thout   caus ing   res i s tance   to  roll. The wings  had  an aspect 
r a t i o  of 3.150, a semispan  of 1.114 f e e t ,  and  were  swept  back 55' a t  the 
leading edge  and loo a t  t h e   t r a i l i n g  edge.  Seven  of  the  models  were 
equipped  with  plain,   t ra i l ing-edge  a i lerons  different ia l ly   def lected.  
The def lec t ion  of each  a i leron w a s  5'. Three  models  were  equipped with 
spoi le rs   loca ted  0.375 inch  forward of t h e   t r a i l i n g  edge. The a i l e ron  
chord was 0.100Cr and the  spoi ler   height  was 0 . 0 2 2 ~ ~ .  

I n  order  to  determine  the  effect  of  adding t a i l   s u r f a c e s   t o   t h e  
configurat ion,   s ix  of the models  were  equipped  with  fixed  horizontal  and 
v e r t i c a l   t a i l   s u r f a c e s  of the same plan form as the wing. The area of 
the  horizontal  t a i l  w a s  25 percent of the wing area and the  semispan was 
one-half  the wing semispan. The area of t h e   v e r t i c a l   t a i l  was 25 percent 
of the wing area and the  height of t he   ve r t i ca l  t a i l  was 70.7 percent of 
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the wing semispan. On four models the  horizontal  t a i l  was l o c a t e d   i n  
the  plane  of  the wing. On two of  the models the  horizontal  t a i l  was 
located 0.J-tOOcr above the  plane of the wing. It should be noted  that  
the   f ree- to- ro l l  ta i ls  mentioned  previously  had  negligible  resistance 
t o   r o l l ;   t h e  models without  fixed t a i l  surfaces  were,   therefore,   effec- 
t i ve ly  wing-body combinations  and  are  herein after r e f e r r e d   t o  as models 
with no ta i l s .  

The wings of the models were machined  from so l id  aluminum a l loy  and 
had an NACA 6 5 ~ 0 0 3   a i r f o i l   s e c t i o n .  The t a i l  surfaces were  of l/tj-inch 
aluminum-alloy f la t  p la te   wi th  rounded  leading  edges. The physical  char- 
a c t e r i s t i c s  and  dimensions of the models a re   g iven   in  tables I and I1 and 
i n   t h e  photographs  of  figure 1 and in   the   ske tches  of f igure  2. 

TESTS 

The t e s t s  were made a t   t h e  Langley Pi lot less   Aircraf t   Research 
S ta t ion  a t  Wallops Island, Va. A two-stage  rocket w a s  used to   p rope l  
the models t o  a Mach number of about 1.5. Test data were recorded  con- 
tinuously  during a period of free  f l ight  following  burnout of the  second 
propulsion  stage. A spinsonde  (polarized  radio transmitter) w a s  used t o  
measure ro l l ing   ve loc i ty .  Model fl ight-path  velocity,   range, and a l t i -  
tude were measured  by means of radar.  Atmospheric data and  wind ve loc i ty  
were ob ta ined   j u s t   p r io r   t o   each   t e s t  by means of radio equipment car r ied  
a l o f t  by balloons which  were tracked by radar.  The range  of t e s t  Reynolds 
numbers i s  shown i n   f i g u r e  3. 

ACCURACY AND CORRECTIONS 

It i s  e s t ima ted   t ha t   t he   t e s t  data are  accurate  within  the  following 
limits : 

Subsonic  Supersonic 

pb/2V, radians . . . . . . . . . . . . . . . . . .  tO.003 t o .  001 
M . . . . . . . . . . . . . . . . . . . . . . . .  iO.01 t o .  01 

The data  were corrected by the  method  of reference 2 f o r   t h e  wing 
and t a i l  incidence  errors   resul t ing from construction  tolerances.  No 
correction w a s  made for the   e f fec ts  of r o l l i n g  moment of i ne r t i a   s ince ,  
a t  the   ro l l ing   acce le ra t ions   incur red   in   these   t es t s ,   re fe rence  3 shows 
these   e f fec ts  t o  be negl igible . '  
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.RF,SULTS AND  DISCUSSION 

Effect of Adding Fixed T a i l  Surfaces 

The effect  on pb/2V of  adding  fixed t a i l  surfaces to   the  config-  
urat ion is  shown i n   f i g u r e  4 where the   var ia t ion  of pb/2V with Mach 
number i s  presented  for   the  var ious  controls   with and without  fixed t a i l  
surfaces on the  body. Par t s  of some of the pb/2V curves are omitted 
because some of the  models incurred a longi tudinal   or   di rect ional  trim 
change in   the   t ransonic   reg ion  which may have a f fec ted   ro l l ing   e f fec-  
t iveness .   Suff ic ient  data were obtained from a l l  models t o   ge t   an  
indicat ion of t h e   e f f e c t  of adding  the t a i l ,  however.  With the  excep- 
t i o n  of the  midspan ai leron,   addi t ion of the t a i l  surfaces  caused  an 
appreciable   reduct ion  in  pb/2V for  each  of  the  controls  investigated 
a t  both  subsonic  and  supersonic  speeds.  Part  of this reduction was, of 
course, due to   t he   add i t iona l  damping i n   r o l l  of the  t a i l  surfaces 
excluding  the  effect   of  wing-tail   interference.  The i n c r e a s e   i n   r o l l  
damping due to   t he   add i t ion  of the t a i l  surfaces,  which were  of the same 
plan form as the  wing, was easi ly   evaluated by taking  into  accout  the 
d i f f e rence   i n  body e f f e c t s  by the method of  reference 4. The increase 
i n  damping w a s  found t o  be  about 1-7 percent  which is  no t   su f f i c i en t   t o  
account f o r   t h e   t o t a l   r e d u c t i o n   i n  pb/2V  shown i n   f i g u r e  4. The 
remaining  reduction i s  at t r ibuted  to   wing-tai l   in terference.  The e f f e c t  
of wing-tai l   in terference is  i n  some cases   apprec iab le ,   par t icu lar ly   for  
the  1/3-exposed-span  inboard  aileron where it w a s  suf f ic ien t   to   cause  
r o l l   r e v e r s a l  a t  a Mach number of  about 1.09. 

Comparison of the   reduct ion   in  pb/2V due to   wing- ta i l   in te r fe rence  
for   the   var ious   a i le rons  i s  shown i n   f i g u r e  5 .  The reduct ion   in  pb/2V 
due to   i n t e r f e rence   e f f ec t s  i s  considerable   over   the  ent i re   tes t  Mach  num- 
ber range f o r   t h e  1/3-exposed-span  inboard  aileron.  For  the 2/3-exposed- 
span  inboard  aileron  the  reduction i s  much smaller. In  the  case of the 
1/3-exposed-span  midspan ai leron,   wing-tai l   in terference  s l ight ly  
increases pb/2V or  causes no s igni f icant  change a t  a l l .  The reasons 
for   these   var ied   e f fec ts  may be  seen by examining the  act ion on the t a i l  
surfaces of the   ve loc i ty  components induced  by  the wing loads (downwash 
and sidewash).   In  the area direct ly   behind  the  a i leron,   the   ver t ical  
component of  induced  velocity i s  i n  such a d i r ec t ion   t ha t  it opposes the 
ai leron  or   tends  to   reduce pb/2V. Inboard and outboard  of  the  aileron 
the  induced  velocity,  though much smaller   than  that   d i rect ly   behind  the 
ai leron,  i s  i n  such a d i r ec t ion   t ha t  it tends t o  a id  the   a i le ron   or  
increase pb/2V. On the  models  of this   invest igat ion,   the   span of the  
horizontal  t a i l  w a s  about  equal t o   t h e  spanwise extent  of the 1/3-exposed- 
span inboard  aileron. The ta i l  was the re fo re   i n  a region of high  adverse 
interference  effects   for   both of the  inboard  ailerons.   In  the  case of the 
2/3-exposed-span aileron,  about  one-half of the  a i leron  load w a s  outboard 
of the tai l ,  however, and the  velocity  induced a t  the t a i l  by t h i s   p a r t  of 
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the  load  counteracted  the  velocity  induced by the   pa r t  of the  load  direct ly  
ahead of the t a i l .  Also,  since pb/2V was higher   for   the 2/3-exposed-span 
ai leron,   the  wing damping load and the  velocity  induced by this   load w a s  
h igher   for   th i s  model than f o r  the 1/3-exposed-span-aileron models. Since 
the  velocity  induced by the damping load was i n  a favorable  direction,  the 
adverse  effects of the  velocity  induced by the  a i leron  load were s t i l l  
further  reduced  for  the 2/3-exposed-span ai leron.   In   the  case of the 1/3- 
exposed-span  midspan ai leron,   the  t a i l  w a s  almost  entirely  inboard o f  the 
ai leron.  The velocity  induced a t  the t a i l  by the  a i leron  load,  as w e l l  as 
t h a t  induced  by  the wing damping load, was i n  a favorable  direction;  hence, 
pb/2V w a s  s l igh t ly   increased .  The horizontal  component of veloci ty   (s ide-  
wash) w a s  i n  an adverse  direct ion  for  a l l  a i lerons,  and w a s  l a rges t   fo r   t he  
2/3-exposed-span a i le ron  and smal les t   for   the  1/3-exposed-span  midspan 
ai leron.  The e f f ec t s  of sidewash were small i n  comparison  with  the  effects 
of downwash, however. 

The e f f ec t s  of wing-tail   interference  are compared f o r  an a i le ron  and 
a s p o i l e r   i n   f i g u r e  6. Both were 2/3-exposed-span  inboard  controls. The 
loss i n  pb/2V due to   in te r fe rence  was  much la rger   for   the   spoi le r   than  
fo r   t he   a i l e ron  a t  subsonic  speeds  and s l igh t ly   l a rge r  a t  supersonic 
speeds. It should  be  noted, however, that   a l though  the two controls are 
of the same spanwise  extent,  the  rolling  effectiveness of the  spoi ler  i s  
approximately  twice  that of the  aileron. If the two controls were com- 
pared on a bas i s  of equal   rol l ing  effect iveness ,   the  loss i n  pb/2V of 
the   spoi le r  would be  approximately  halved, i n  which case  the loss  i n  
ro l l ing   e f fec t iveness  due to   wing- ta i l   in te r fe rence  would be about  equal 
for   the  two controls  a t  subsonic  speeds  and s l igh t ly   l e s s   fo r   t he   spo i l e r  
a t  supersonic  speeds. 

Ef fec t  of Moving the  Horizontal T a i l  Out of 

the  Plane  of  the Wing 

Two models were tes ted  with  the  horizontal  t a i l  placed 0 . 4 0 0 ~ ~  
above the  plane  of  the wing t o  determine some e f f e c t s  on wing-tai l   in ter-  
ference of moving the t a i l  location  out of the  plane  of  the wing. The 
resu l t s   a re   p resented   in   f igure  7. Moving the  t a i l  t o   t h e  new pos i t ion  
resu l ted  i n  a reduction  in  roll ing  effectiveness  except for the   a i leron 
a t  supersonic  speeds where there was no change i n  pb/2V. There are   three 
possible   causes   for   the  reduct ion  in  pb/2V with change i n  t a i l  location: 

1 

! (1) When the  horizontal  t a i l  w a s  i n  the  plane  of  the wing, a la rge  

(I' damping moment of t he   en t i r e ly  exposed t a i l  w a s  higher  than  that  of  the 

p a r t  of the t a i l  area was blanketed by the model fuselage,  whereas, i n  
the  high  locat ion,   the  entire t a i l  was exposed. It is  c e r t a i n   t h a t   t h e  

par t ia l ly   covered t a i l .  

@ 

" 
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(2)  Although the magnitude  of the downwash w a s  probably smaller on 
the t a i l  i n   t he   h igh   pos i t i on ,  it is  possible that the  effects of down- 

.wash were stronger  since a l l  the  t a i l  area was exposed. 

(3) The end-plate effect  of the  horizontal  t a i l  mounted on t h e   t i p  
of t he   ve r t i ca l  t a i l  probably  increased  the  effects of v e r t i c a l - t a i l  
damping and  sidewash. 

Comparison  With Theory 

The theories   avai lable   for   predict ing  the  loads due t o   s p o i l e r s  a t  
the  time  of this wr i t ing  were p rac t i ca l ly  a l l  empirical  and  were l imi ted  
i n  scope.  For this   reason,  no attempt was made to   ca l cu la t e   ro l l i ng  
effectiveness  for  comparison  with  the  spoiler data. Calculations were 
made f o r  comparison with  the  a i leron data by the  following methods: A t  
subsonic  speeds,  the wing loadings were calculated by t h e   l i f t i n g - l i n e  
method, a method which replaces  the wing with a system  of  horseshoe 
vortices  centered a t  the  quarter-chord  l ine and  equates  the downwash 
angle  induced  by  these  vortices a t  the  three-quarter-chord  l ine  to  the 
effective  angle of a t t ack  of the  wing. A t  supersonic  speeds,  the wing 
loads were calculated by the  two-dimensional-strip  theory of reference  2. 
Downwash and  sidewash  angles  were  calculated a t  both  subsonic  and  super- 
sonic  speeds  by  the method of  reference 5 .  This method is  applicable a t  
subsonic  speeds  and it i s  shown in   re fe rence  6 t h a t  downwash a t  i n f i n i t y  
i s  independent  of Mach number and t h a t  downwash a t  i n f i n i t y  i s  a good 
approximation of downwash a f ini te   dis tance  behind  the wing, a t  super- 
sonic  speeds. T a i l  loads were ca l cu la t ed   i n  a l l  cases  by  the same method 
used to   ca lcu la te  wing loads. The presence  of  the body was accounted f o r  
by the lnethod of reference 4. No correction w a s  made in   t he   ca l cu la t ions  
f o r  ae roe la s t i c   e f f ec t s  inasmuch as  the model wings were r e l a t ive ly  stiff 
and ae roe la s t i c   e f f ec t s  were small. 

A comparison of calculated and  experimental  rolling  effectiveness i s  
made i n   f i g u r e  8. The agreement  between calculat ions and experimental 
data i s  incons is ten t .   In  some cases, i n   p a r t i c u l a r   f o r   t h e  1/3-exposed- 
span  midpsan ai leron,  good agreement w a s  obtained.  In  other  cases,  the 
calculations  underestimated  experiment by as much as 30 percent. 

A comparison  of the  change i n  pb/2V due to   add i t ion  of the t a i l  
surfaces  as shown by experimental data and predicted by calculations i s  
shown i n   f i g u r e  g ( a ) .  Calculat ions  are   in  fa i r  agreement  with  experiment 
a t  subsonic  speeds  but i n  poor  agreement a t  supersonic  speeds.   In  f ig- 
ure g (b )  a comparison i s  made between  experiment and theory of the change 
i n  pb/2V caused by moving the  horizontal  t a i l  to   the  high  locat ion.  
Agreement i s  poor a t  subsonic  speeds  but good a t  supersonic  speeds. 
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CONCLUSIONS 

The results of an investigation  to  determine some effects   of  t a i l  
damping and wing-tai l   in terference on the  roll ing  effectiveness  of 
a i lerons and a spoi le r  on a modified-delta wing indicate  the  following: 

1. The addi t ion of t a i l  sur faces   to  a wing-body combination  con- 
siderably  reduced  the  roll ing  effectiveness of  1/3-exposed-span  and  2/3- 
exposed-span  inboard  ailerons,  but  did  not  appreciably change t h e   r o l l i n g  
effect iveness  of a 1/3-exposed-span  midspan ai leron.  

2. When compared  on the  basis   of   equal   rol l ing  effect iveness ,   the  
loss i n  ro l l ing   e f fec t iveness  due t o  the  addi t ion of t a i l  surfaces was 
about  the same f o r  a 2/3-exposed-span  inboard  spoiler and the 2/3-exposed- 
span  inboard  aileron a t  subsonic  speeds and s l i g h t l y   l e s s   f o r   t h e   s p o i l e r  
a t  supersonic  speeds. 

3. Changing the  locat ion of the  horizontal  t a i l  from  the  plane of 
the wing t o  a pos i t ion  40 percent of the wing root  chord above the  plane 
of the wing caused a fur ther   reduct ion   in   ro l l ing   e f fec t iveness   for   bo th  
the 2/3-exposed-span a i le ron  and the 2/3-exposed-span spoi le r  a t  subsonic 
speeds  and f o r   t h e   s p o i l e r  a t  supersonic  speeds. 

Langley  Aeronautical  Laboratory, 
National  Advisory  Cornittee  for  Aeronautics, 

Langley  Field, V a .  , February  28 , 1957. 



8 

REFERENCES 

NACA RM L57C13 

1. English, Roland D.: Free-Flight  Investigation To Determine Some 
Effects of T a i l  Damping and Wing-Tail Interference on the  Rolling 
Effectiveness of Inboard and Outboard Ailerons on an Untapered 
Sweptback Wing. NACA RM L54L17a, 1955. 

2.  Strass, H. K u r t ,  and  Marley, Edward T.: Rolling  Effectiveness of 
All-Movable Wings a t  Small Angles of Incidence a t  Mach  Numbers From 
0.6 t o  1.6. NACA RM L5lH03, 1951. 

3. Sandahl, Carl A., and Marino, Alfred A.: Free-Flight  Investigation 
of Control  Effectiveness of Full-Span 0.2-Chord Plain  Ailerons a t  
High Subsonic,  Transonic, and Shpersonic Speeds To Determine Some 
Effects of Section  Thickness and Wing Sweepback. NACA RM L7Do2, 
1947 - 

4. Spreiter, John R. :  The Aerodynamic Forces on Slender  Plane- and 
Cruciform-Wing and Body Combinations. NACA Rep. 962, 1950.  (Super- 
sedes NACA TN's 1897 and 1662. ) 

5 .  Diederich,  Franklin W . :  Charts and Tables f o r  Use i n  Calculations of 
Downwash of Wings  of Arbitrary  Plan Form. NACA TN 2353, 1951. 

6. Mirels,  Harold, and Haefeli, Rudolph C . :  Line-Vortex Theory fo r  Cal- 
culation of Supersonic Downwash. NACA Rep. 983, 1950. 



NACA RM L57C13 9 

TAEKlX I . . MODEL PHYSICAL  CHARACTERISTICS 

Body : 
Diameter. i n  . . . . . . . . . . . . . . . . . . . . . . . . .  5.00 
Length. i n  . . . . . . . . . . . . . . . . . . . . . . . . . .  63.87 
Fineness r a t i o  . . . . . . . . . . . . . . . . . . . . . . . .  12.77 

Aileron: 
Chord. i n  . . . . . . . . . . . . . . . . . . . . . . . . . .  1.70 

Spoiler : 
Height.in . . . . . . . . . . . . . . . . . . . . . . . . . .  0.38 

Horizontal t a i l :  
span. i n  . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-37 
Chord at   center   l ine.   in  . . . . . . . . . . . . . . . . . . .  8.49 
Area. sq i n  . . . . . . . . . . . . . . . . . . . . . . . . .  56-80 
Aspectrat io  . . . . . . . . . . . . . . . . . . . . . . . . .  5-15 
Sweep . angle,  leading edge, deg . . . . . . . . . . . . . . . .  53-00 
Sweep angle, t r a i l i ng  edge, deg . . . . . . . . . . . . . . .  10.00 
Thickness, i n  . . . . . . . . . . . . . . . . . . . . . . . .  0.13 

Ver t ica l   t a i l :  
Height. in . . . . . . . . . . . . . . . . . . . . . . . . . .  9.45 
Chord at   center   l ine.   in  . . . . . . . . . . . . . . . . . . .  12.00 
Area. sq i n  . . . . . . . . . . . . . . . . . . . . . . . . .  56.80 
Aspect r a t io  . . . . . . . . . . . . . . . . . . . . . . . . .  3.15 
Sweep angle.  leading edge. deg . . . . . . . . . . . . . . . .  55.00 
Sweep angle. t r a i l i ng  edge. deg . . . . . . . . . . . . . . . .  10.00 
Thickness. i n  . . . . . . . . . . . . . . . . . . . . . . . .  0.13 
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11. - CONTROL CHARACTERISTICS 

Inboard end 
of control, 
percent  b/2 

Outboard end 
of control, 
percent  b/2 

Horizontal-tail  location 

~ 

1/3-exposed-~pan  inboard aileron 

1 

Center l ine  2 

None 
18.7 45.8 

2/3-exposed-span inboard aileron 

3 

0 . 4 0 0 ~ ~  above center  line 5 

Center l ine  73 -0 18.7 4 

None 

1/3-exposed-span midspan aileron 

6 

Center l ine  7 

None 
-. 73.0 45.8 

2/3-exposed-span inboard spoiler 

None 

73 -0 Center l ine 

0 . 4 0 0 ~ ~  above center  line 





(b )  1/3-exposed-spm  midspm aileron;  horizontal t a i l  on  model center Line. L-90114.1 

Figure 1.- Continued. 

I 



. "  

( c )  2/3-exposed-span inboard spoiler; horizontal  tail 0.4OOcr above center  l ine.  L-90116 .1 

Figure 1.- Concluded. 



t- Free  -to-rol I tail 

- I 
I 
I 

\ 

+ 17.20- 

* Y r  63.87 

No f ixed  ta i l   ( top  v iew) 

Free - to-roll  tail 

* 8.49 - 
Horizontal  tai l   on  center line Free-to-rol l   tai l  

(top  view) 

Hor izontal  tail 0.400 cr  above  center line 
(side  view) 

(a) Configurations  tested. 

Figure 2.- Sketches of t e s t  models. All l i n e a r  dimensions in   inches.  



l/3 - exposed -span 
inboard  aileron 

I /  3 - exposed -span 
midspan  aileron 

2 / 3  -exposed -span 
inboard  aileron 

2/3 - exposed  -span 
inboard  spoiler 

( b )  Control   detai ls .  

Figure 2.- Concluded. 
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I 

NACA RM L57C13 

I 1 I I I I I I I I 

M 

Figure 3 . -  Variation of Reynolds  number  with  Mach  number.  Reynolds  num- 
ber  based  on  mean  exposed  wing  chord, 0.575 foot. 



I 

.4 

.O 8 

p 4 

.6 1.0 1.2 
M 

(a )  1/3-exposed-span  inboard  aileron. 

I .4 

-4 .8 I .o 
M 

1.2 I .4 1.6 

(b)  2/3-exposed-spa.n inboard  aileron. 

Figure 4.- Effect on pb/2V of adding  fixed t a i l  sur faces   to  the 
configuration. 
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I .6 

I .2 

N 
> 
2 .08 
a 

.O 4 

0 
.4 

M 

(c) 1/3-exposed-span  midspan  aileron. 

.6 8 1.0 
M 

I .  2 I .4 I .6 

(d)  2/3-exposed-span  inboard  spoiler. 

Figure 4.- Concluded. 
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.04 

-.04 

M 

(a)  1/3-exposed-span  inboard  aileron. 

(b) 2/3-exposed-span  inboard  aileron. 

M 

(c )  1/3-exposed-span  midspan  aileron. 

Figure 5.- Comparison of reduction  in pb/2V due  to  wing-tail  inter- 
ference  for  the  various  ailerons. 
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.O 4 
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(a) 2/3-exposed-span inboard  aileron. 

.16 

. I  2 

.O 8 

*o 4 

0 

NACA RM L57C13 

M 

( b )  2/3-exposed-span inboard  spoiler. 
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(a) 2/3-exposed-span inboard aileron. 

c\J 
> 
n 
a 
\ 
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. I6 

. I  2 

.O 8 

.O 4 

U 

fl .6 1.0 I .2 
M 

(b )  2/3-exposed-span inbomd  spoiler. 

I .4 1.6 

Figure 7.- Effect of raising  the  horizontal  t a i l  0.4OOcr above the  center 
l ine .  
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.8 1.0 1.2 I .4 1.6 
M 

(a )  No t a i l .  

M 

( b )  Ta i l  on center  line. 

( e )  Tail.  0.400cr above center  l ine.  

Figure 8.- Comparison of calculated and  experimental  data. 



- -.04 
N 
> 
\ 
n 
a -.02 
4 

""- 
v 

0 
.6 .8 I .o 1.2 I .4 I .6 

M 
213  -exposed-span  inboard  aileron 

4 .4 .6 .8 1.0 1.2 I .4 I .6 
M 

113-exposed-span  inboard  aileron 

4 .6 .8 1.0 I .2 1.4 1.6 
M 

113 -exposed  -span  midspan  aileron 

(a) A(pb/2V) due to   add i t ion  of t a i l  surfaces.  

- -.02 

?I 

2 0  
\ 

u 

Q 
.o 2 

4 .6 .8 1.0 1.2 I .4 1.6 
M 

2/3-exposed  -span  inboard  aileron 

( b )  a(pb/2V)  due t o  changing hor izonta l - ta i l   loca t ion .  

Figure 9.- Variation  of change i n  pb/2V due to   add i t ion  of t a i l  sur- 
faces and  due t o  change i n  horizontal- ta i l   locat ion  with Mach number. 

NACA - Langley Field, Va. 
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